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1 Methods

1.1 Network metrics

Here we explain, according to (Newman, 2010), the complex network metrics that support the empirical analysis of graphs obtained with CALI model.

• Degree: the simplest centrality metric is the degree of a node, which is the number of edges connected to it. (Newman, 2010). Is also known as the
number of neighbours of a given node in a graph. For example, in Figure 1 there are five hubs representing hydrogen bond interactions with high
degree: the highest (78) is linked with three nodes to another one with 42, another big one with 61 and two smaller with 16 and 14.

• Node betweenness: measures the extent to which a node lies on paths between other nodes. This metric allows to identify important nodes with low
degree, which also works as a bridges, joining two or more groups. The betweenness centrality of a node i is the number of all shortest paths in the
graph that pass through i:

xi =
∑
st

nist (1)

s and t are nodes of the graph and if there is no path between them nist is zero.
• Edge betweenness: similarly, measures the extent to which an edge lies on paths between nodes.
• Closeness: measures the means distance from a node to other nodes. Suppose di,j is the length of a shortest path between nodes i and j, then the

mean shortest path distance from i to j, averaged all vertices j in the network. (Newman, 2010) uses the following formula:

li =
1

n

∑
j

dij (2)

• Eccentricity: is the maximum distance between a node s and any reachable node t of the graph (Junker et al., 2008). Distance between two nodes that
are not connected is defined as infinity. In this case, eccentricity can be calculated for the graph connected components. The eccentricity centrality
for s is defined by the formula:

ecc(s) =
1

max{dist(s, t) : t ∈ V }
(3)

• Communicability 1: known as subgraph centrality of a node, it is the sum of closed walks of all lengths starting and ending at the same node. Using
the graph spectrum notation in the generalization proposed by (Estrada and Hatano, 2008), where φj(s) is the s th element of the j th orthogonal
eigenvector of the adjacency matrix associated with the eigenvalue λj , the communicability between the nodes s and t is given by:

c(s, t) =

n∑
j=1

φj(s)φj(t)e
λj (4)

1 https://networkx.github.io/documentation
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1.2 The FSM strategy

A well stablished strategy to find patterns in a dataset of graphs is the use of frequent subgraph mining (FSM) algorithms as, for instance, SUBDUE
Cook et al. (1994), AGM Inokuchi et al. (2000), FSG Kuramochi et al. (2004), MoFa Borgelt et al. (2002), gSpan Yan et al. (2002), FFSM Huan et al.
(2003) or GASTON Nijssen et al. (2005).

The work Silveira et al. (2015) instantiated the FSM paradigm and focused on discovering PLI patterns through a transaction based and exact
algorithm, gSpan. Transaction based FSM algorithms aim to find frequent subgraphs in a collection of input graphs, called transactions, and exact means
that the mining algorithm guarantees to find all frequent subgraphs in the input data Jiang et al. (2013). This strategy allows to reveal some residues and
even atoms that are essential for PLI according to experimental biological data. Nonetheless, this strategy have some drawbacks that we discuss bellow.

Exact frequent subgraph mining algorithms are computationally expensive as they undertake extensive subgraph isomorphism comparisons Jiang
et al. (2013). In addition, the number of frequent subgraphs increases exponentially with the size of the graph (for a frequent k-graph, the number of
frequent subgraphs can be as large as 2k) and, among the patterns, many can be structurally repetitive, as a frequent subgraph can have other frequent
subgraphs within it Yan et al. (2003). Generating and analyzing the results of this data mining process is certainly a challenge.

Finding a large number of patterns, as many of them are structurally repetitive, is a problem that can be mitigated by using FSM algorithms that
mine closed (CLOSECUT and SPLAT, both proposed by Yan et al. (2003)) or maximal (SPIN Huan et al. (2004) and MARGIN Thomas et al. (2006))
subgraphs. According to Koyutürk et al. (2004), in the case of biological networks, maximal frequent subgraphs are deemed to be the most interesting
ones, while according to Fischer et al. (2004), closed patterns have some biological meaning.

The main disadvantage of FSM algorithms is that they do not provide a direct mapping from output patterns to the graphs in the input dataset. When
studying PLIs, it is crucial to map computed patterns to protein and ligand atoms in the input data, which gives the information of which atoms (and its
respective residues) are involved in PLI throughout a dataset of interest. To the best of our knowledge, the only way to circumvent this issue is to map the
frequent subgraphs from FSM output to input data by performing subgraph isomorphism, which is, according to Bonnici et al. (2015), a computationally
expensive (NP-complete) problem. The computational cost of frequent subgraph mining algorithms, combined with such mapping process, prevents
FSM strategy from being general and scalable.

1.3 Datasets

In this section we detail how CDK2 and Ricin datasets were obtained (from Protein Data Bank (PDB) (Rose et al., 2015) in August 2014). The list of
PDB identifiers comprising each dataset is provided in Table 1 for CDK2 and Table 2 for Ricin.

1.3.1 CDK2
Schonbrunn and colleagues in their work (Schonbrunn et al., 2013) depict how they discovered by high-throughput screening the compound 2-
(allylamino)-4-aminothiazol-5-yl-(phenyl) methanone as a potent inhibitor of the human CDK2. Through the cocrystal structure (PDB id 3QQK), they
could show the importance of hydrogen bonds in the binding of this compound with the ATP site. The hydrogen bonds occur between the thiazolamine
moiety and the hinge region (GLU81-LEU83).

Departing from previously cited compound, the authors developed other 95 analogues by replacing systematically the flanking allyl and the phenyl
moieties whereas the aminothiazole core was maintained unchanged to preserve its functionality. Thenceforth, they evaluate analogues as their inhibitory
potential. Nonetheless, only 35 from these analogues had their crystal structure determined.

Besides these 35 structures, we have found another 38 related structures (totaling 73 PDB files) by searching on the PDB2 website. These files are
supposed to be discussed in another work from the same authors which is not published yet to the best of our knowledge.

1.3.2 Ricin
We searched Protein Data Bank for key words ricin, ricin-like and ribosome inactivating protein and obtained 136, 126 and 163 results respectively. As
there was overlap among results, the total number of different PDB entries was 266.

Sequences from all 266 PDB entries were split by chain using PDBest tool (Gonçalves et al., 2015) and were aligned against PDB id 2AAI (Rutenber
et al., 1991) chain A, which we call 2AAI.A, using an in-house implementation of Needleman-Wunsch algorithm (Needleman et al., 1970). PDB entry
2AAI.A is the catalytic subunit of ricin toxin without any ligands. Those 47 structures which have 50% or more identity were taken as our initial ricin
dataset.

The final step to obtain ricin dataset was to select entries which have at least one ligand, as we were interested in patterns of interactions between
a protein and its ligands. So we computed probable protein-ligand interactions at atomic level using a geometric approach (which is detailed in Section
Modelling of protein-ligand interactions as graphs) to determine ligands that were interacting with protein residues. Only ligands with seven or more
atoms were considered, in a similar manner to (Pires et al., 2013). This process resulted in 29 PDB chains.

2 Results and discussion

2.1 Global CALI model analysis

Global network descriptors are provided in Table 3. Global CALI model analysis from main paper was based on these descriptors.

2 http://www.rcsb.org
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Table 1. CDK2 dataset.

PDB id and Chain Ligand name PDB id and Chain Ligand name PDB id and Chain Ligand name PDB id and Chain Ligand name
3QL8.A X01 3QQF.A X07 3QQG.A X06 3QQH.A X0A
3QQJ.A X11 3QQK.A X02 3QQL.A X03 3QRT.A X14
3QRU.A X19 3QTQ.A X35 3QTR.A X36 3QTS.A X46
3QTU.A X44 3QTW.A X3A 3QTX.A X43 3QTZ.A X42
3QU0.A X40 3QWJ.A X6A 3QWK.A X62 3QX2.A X63
3QX4.A X4B 3QXO.A X65 3QXP.A X64 3QZF.A X66
3QZG.A X67 3QZH.A X69 3QZI.A X72 3R1Q.A X75
3R1S.A X73 3R1Y.A X76 3R28.A XA0 3R6X.A X84
3R71.A X86 3R73.A X87 3R7E.A X88 3R7I.A X9I
3R7U.A X96 3R7V.A Z02 3R7Y.A Z04 3R83.A Z14
3R8L.A Z30 3R8M.A Z19 3R8P.A Z46 3R8U.A Z31
3R8V.A Z62 3R8Z.A Z63 3R9D.A X6B 3R9H.A Z67
3R9N.A Z68 3R9O.A Z71 3RAH.A O1Z 3RAI.A X85
3RAK.A 03Z 3RAL.A 04Z 3RJC.A 06Z 3RK5.A 07Z
3RK7.A 08Z 3RK9.A 09Z 3RKB.A 12Z 3RM6.A 18Z
3RM7.A 19Z 3RMF.A 20Z 3RNI.A 21Z 3ROY.A 22Z
3RPO.A 24Z 3RPR.A 25Z 3RPV.A 26Z 3RPY.A 27Z
3RZB.A 02Z 3S00.A Z60 3S0O.A 50Z 3S1H.A 56Z
3SQQ.A 99Z

Table 2. Ricin dataset.

PDB id and Chain Ligand name PDB id and Chain Ligand name PDB id and Chain Ligand name PDB id and Chain Ligand name
1BR5.A NEO 1BR6.A PT1 1IFS.A ADE 1IFU.A FMC
1IL3.A 7DG 1IL4.A 9DG 1IL5.A DDP 1IL9.A MOG
1J1M.A TRE 1OBT.A AMP 1RZO.A GAL 1RZO.B GAL
1RZO.C GAL 1RZO.D GAL 2P8N.A ADE 3EJ5.X EJ5
3HIO.A C2X 3PX8.X JP2 3PX9.X JP3 3RTI.A FMP
3RTI.B GAL 3RTJ.B GAL 4ESI.A 0RB 4HUO.X RS8
4HUP.X 19M 4HV3.A 19L 4HV7.X 19J 4MX1.A 1MX
4MX5.X 5MX

Table 3. Global network descriptors

Descriptors CDK2 Ricin

Number of nodes 407 321
Number of edges 459 377
Global clustering coefficient 0.0 0.0
Number of connected components 14 34
Order of largest component 128 134
Order of second largest component 120 28
Order of third largest component 62 18
Density 0.026 0.020
Average clustering 0.748 0.547
Average clustering bipartite graph for ligands 0.823 0.623
Average clustering bipartite graph for proteins 0.188 0.306

2.2 CALI and FSM comparison

In our proposed FSM strategy, we modeled proteins and its ligands as graphs in which atoms are nodes and interactions between atoms are edges. Protein
nodes were labeled as positive charged, negative charged, aromatic, hydrophobic, donor or acceptor according to (Sobolev et al., 1999). Ligand nodes
were labeled with the same types using PMapper (Pmapper 5.3.8, 2010, Chemaxon3) software. Edges (interactions) were labeled according to both a
distance criteria (the same adopted in CALI) and the type of its nodes, as aromatic stacking, hydrogen bond, hydrophobic, repulsive and salt bridge.

For each dataset, the resulting graphs were clustered and then we searched for frequent patterns (subgraphs) in each group of graphs using the FSM
algorithm gSpan. The clustering analysis is detailed in the paper (Silveira et al., 2015). The CDK2 dataset was segmented in 16 groups while Ricin
dataset was segmented in 3 groups.

3 http://www.chemaxon.com
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In transaction based FSM algorithms, including gSpan, given a graph dataset γ = {G0, G1, ..., Gn}, support(g) represents the number of graphs
in γ which have g as a subgraph. Therefore, this class of algorithm aims to find any subgraph g with support(g) ≥ minSup (a minimum support
threshold). The support choice is empirical and represents a compromise between the number of patterns and their relevance in FSM algorithms.
Increasing the support, we have some patterns that are present in more instances from the input dataset. However, among these patters, we have trivial
ones (for instance, in our case we have many short patterns - one node - that appear in a large fraction of the input graph dataset). So, we can not just
increase the support, as we want to find subgraphs that are frequent and also relevant (at least two nodes connected by an edge). So, in our FSM strategy
we varied the support value from 0.6 up to 1.0 and summarized results in a table that segments the FSM output by the size of the pattern (subgraph), the
support value and the group (from the clustering analysis). This table 4 is coloured and works like a heat map, in which the darker the blue, the higher
the support. Such table allows a visual inspection and choice of the support value. There are some visual data mining techniques that allow users to
perform a exploratory data analysis and to choose appropriate filtering parameters (including support) (Liu et al., 2006; Liu, 2006; DeLine et al., 2015).

Due to this support analysis, in our FSM strategy from (Silveira et al., 2015) the value chosen was support = 0.7. The group chosen for
discussing FSM results was group 3 in CDK2 dataset and group 2 in Ricin dataset because the protein (PDB id 3QQK) from experimental study for
CDK2 (Schonbrunn et al., 2013) was assigned to group 3 in FSM and, similarly, the protein (PDB id 3HIO) from experimental study for Ricin (Ho et al.,
2009) was assigned to group 2 in FSM. The same groups were used to compare FSM to CALI results.

3 CALI images
In this work we proposed CALI, a novel graph-based strategy to model protein-ligand interactions and reveal frequent and relevant patterns among
them. In addition to the proposed graph based model to summarize and detect common protein-ligand interactions, we also devised a visual interactive
representation to illustrate the potential of such modeling. The network visualization is coupled with several filters to support exploration, investigation
and analysis of the model and its emerging patterns.

This section provides screenshots that give examples of some features and resources of CALI model and its visual interactive tool. Also, we show
some results (residues and atoms important in protein-ligand interaction for CDK2 and Ricin dataset according to experimental studies) that can be
obtained by using the filters based in complex network metrics.

Next we present a brief description of each figure.

• Figure 1: visualization of CALI model bipartite graph in which nodes from protein and ligand have different colors and, also, edges have different
colors according to the type of interaction.

• Figure 2: example of atom type filtering possibility.
• Figure 3: example of interaction type filtering possibility.
• Figure 4: CALI search example.
• Figure 5: CALI centrality measures filters.
• Figure 6: CALI details obtained on demand.
• Figure 7: Residues from the hinge region of CDK2.
• Figure 8: Important residues in the interaction between Ricin A chain and 28S rRNA.

4 It is table 6 in Silveira et al. (2015) work. Also it is available online at http://homepages.dcc.ufmg.br/~alexandrefassio/biocomp/index.html, choosing
graph pattern table and then simple table.
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Fig. 1. CALI model biparite graph drawn using a force directed layout. Nodes depict atoms and edges are interactions between them. Different colors

distinguish between protein and ligand atoms and also, we have five colors for edges, to represent the five different types of interactions.This graph

represents CDK2 dataset.
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Fig. 2. Example of an atom type filtering possibility. The user can filter out the network by the types of atoms. When he/she checks or unchecks an

option, the corresponding atoms (nodes) lose contrast with the background and the others are highlighted. The graph in this example is from Ricin

dataset.
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Fig. 3. Example of an interaction type filtering possibility. The user can filter out the network by the types of interactions. When he/she checks or

unchecks an option, the corresponding interactions (edges) lose contrast with the background and the others are highlighted. The graph in this example

is from Ricin dataset.
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Fig. 4. CALI search example. Users can search for a particular residue and / or atom and it is highlighted (users can pick any color they prefer), which

makes easy to find a residue and / or atom in the network. In this figure, we searched for TYR80 and it was highlighted in a brilliant shade of blue.

The graph is from Ricin dataset.
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Fig. 5. Centrality measures filters. There are a total of eight different complex network centrality measures that can be used to filter out the network

elements through sliders. In this figure, we filter out nodes whose degrees are bellow 10% of the maximum value. The graph is from Ricin dataset.
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Fig. 6. Details on demand. For every element of the graph, details can be obtained on demand by passing the mouse over it. In this example, we obtain

node details by positioning the mouse over such node. The graph is from Ricin dataset.
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LEU83:N

LEU83:O

LYS33:NZ

ASP86:N

PHE82:CZ

PHE82:CE2
ILE10:CG2

ASP86:OD2

LYS89:NZ

GLU81:O

LYS33:CE

LEU134:CD1

ALA31:CB

Fig. 7. Residues from the hinge region of CDK2. In this figure, we highlight two important results: (i) CALI was able to spot residues from the hinge

region (GLU81, PHE82 and LEU83) according to (Schonbrunn et al., 2013). Moreover, our model was able to spot some residues that frequently interact

with ligands through hydrophobic interactions: ILE10, LYS33, ALA31 and LEU134. (ii) In a research done by (Kuhn et al., 2011) of a 3-aminoindazole

compound with CDK2 (PDB id 2R64), which is not in our CDK2 dataset, they identified three nitrogen hydrogen bond donors and acceptors that

interact with the axis backbone (GLU81 - LEU83). Using CALI, these interactions are easily detected just watching the two components formed in our

graph by GLU81 e LEU83. These patterns were obtained by CALI G" model.
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TYR80:CE2

TYR80:CD2

VAL81:N
TYR80:CG

TYR80:CD1

TYR80:CE1

TYR80:CZ

GLY121:O

VAL81:O

TYR123:CD2 TYR123:CG

TYR123:CE2

TYR123:N
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ARG180:NH2

ARG180:NH1

ASP96:OD2

Fig. 8. Important residues in the interaction between Ricin A chain and 28S rRNA. In (Ho et al., 2009), authors co-crystalize RTA with a transition

state analogue inhibitor that mimics sarcin-ricin recognition loop of the 28S rRNA. They call our attention to 2 conserved TYR residues (TYR80 and

TYR123) establishing π-stacking (aromatic interactions); ARG180 at one end of the π stacking providing cationic polarization and GLU177 serving to

activate H2O nucleophiles. CALI was able to spot the mentioned residues. These patterns were obtained by CALI G" model.
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